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A model for low-field flux penetration in disordered superconductors
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Abstract

The experimental scaling properties of the first flux penetration in a disordered superconductor (critical exponent
¢ = 2.7) are derived from a granular fractal model. It assumes localisation of the order parameter in randomly coupled
regions and a temperature dependent cutoff in the couplings. Screening currents circulate in percolation fractal clusters
with temperature dependent percolation parameter. Their description requires the heuristic transposition of classical
calculations of first penetration fields in superconductors into fractal space.

1. Introduction

Measurements of the dianiagnetic response of
YBaCuOg ;F, (0<x<0.14) ceramics [1] at very low
fields (from 1 m Oe to 1 Oe), show that the field of first
flux penetration follows a law H,(T,x) = H;(0,x)e® with
e=|1-T/T| and ¢=2.7+0.2, independently of the
amount of fluorine. Furthermore, a universal behaviour is
observed above H,, where flux motion in the sample is
expected to be irreversible.

Qur purpose here is to show that the critical
behaviour described by the exponent ¢ and its value, are
necessary  consequences of disorder in the samples.
Disorder also provides a hint as to the origin of universal
irreversible behaviour.

The existence of a critical field
He = ®,In(A, /&) /412 p, for the transition between

the Meissner and the single-vortex state in type 1l
superconductors, as well as that of a barrier field
H,=®d,/4n)_ &, opposing the passage of a vortex
across a surface, have been known for a long time [2].
Here A, and & are the Ginzburg-Landau penetration
depth and coherence length, respectively ; they both vary
like £1/2) which precludes the fitting of experimental
results by any of the two fields.

The diamagnetic response of YBa,Cu;O, 5F, samples
obeys the same law in the granular sample with x =0 as
in the others where only compositional disorder varies
with x [3]. We then assume that in all cascs there is a
localisation of the superconducting order parameter in
randomly coupled regions of size a >> £(T). This allows
us to apply and extend a model [4,5) which has
successf{ully described properties of weakly-coupled
granular superconductors, in particular the penetration
depth A(T)~e P (B=0.7 £0.1) due to Josephson-like
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intergranular screcning currents. The main idcas of this
model are : (i) the weakest couplings J <<kyzT have
little influence on the critical behaviour near the
coherence temperature T, ; only couplings above a cutoff
J*(T) are relevant, which dcfines a percolation parameter
p{J*(T)) =Prob(J > J*) ; (ii) percolation clusters and
thermally correlated regions (grain-to-grain correlation
length &(T)) tend to coincide, i.e. the percolation
correlation length &, ~&(T) ~«V and |p/p,_ - 1| ~ g¥/ve,
where v and v}, are thermal and percolation exponents,
respectively ; thus p(T) is independent of the particular
distribution of couplings in the sample ; (iii) thermal and
percolation exponents are related, and in particular
v =2vp/3Bp = 1.35, in very good agreement with the
experimental results [6] ; (iv) intragranular screening
currents are taken into account by simply assuming that
couplings J < J*(T) form a "medium" with permeability
K(AJa) <p, in which the percolation clusters are
imbedded.

One of the essential features of these clusters is their
fractal dimension. The question arises : how to describe
the ficlds observed in euclidean (d-dimensional) space,
actually gencrated by currents circulating in fractal
(D-dimensional, D < d) space ? We answer this question
heuristically in what follows, and transpose the classical
calculation of Hi; and H to the infinite cluster.

2. Currents and fields in fractal clusters

We remark that D-dimensional clusters occupying a
volume L4 contain (L/a)P elements (junctions, grains...).
Here a is a microscopic unit of fength. If a fractal being
existed, he would measure a density (L/a)P/LP =
aD=const, while euclidean observers would find
(L/a)P/Ld = ad (L/a)P¢,
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2.1 Transformation of densities

The preceding scheme applies to all extensive
quantities. Euclideans and Fractalians see the same tofal
free energy F,, magnetic flux @, current I, ..., but

different vortex energies per unit length f;, flux (5) and

current (]) densities, etc. More precisely, one can show

that if f(7) is a density defined in a fractal space the
averages

=(f(7)),, fo=(f(¥),. f=Wkp )

taken on d- and D-dimensional spaces,respectively, are
related by the dilution factor

(a/L)* Pifa<L<t

(are)*PifL>g @

W(L) ={

Notice that the intersections [7] of a segment of length L
or a surface of area L2 with the fractal have dimensions
D-2 or D-1, respectively, and fractal "length” LW(L) or
"area" L2W(L). We can thus form Table 1, containing all
quantities necessary for our calculations. They will
usually appear under an integral sign, so the value of W
will be determined by the domain of integration. The
mesoscopic flux density b is related to the induction by

B=(5)..

2.2 Flux penetration

Table 1 provides the information necessary to
formulate a physical problem in D dimensions and to
solve it in euclidean space. This correspondence insures
in particular that the operator V|, satisfies formally usual
vector identities. These assertions are usefully illustrated
by the calculation of the energy F; of an isolated
Josephson-like vortex line over a length L in an infinite

cluster. In the London approximation one has to
minimize the sum of magnetic and kinetic energies

F(L)= J[bf, +x2D|vDABD|2]$
D

- I[bz +22|vAb[ ] % : G)

which leads to London equations for both by, and b.

Using these equations and well-known vector identities,
one obtains

F(L)= J' P79, (BpAVpADp ) A2, /20y
= J.dD" 7.(bAVAD) A2 /2uW

dP?3 4
4n>3pW(a) I @

The first integration uses the divergence theorem
after replacing Vi, by W-!V. The second integration is
performed around a cylinder of radius a (the vortex is of
Josephson type and therefore has no normal core),
parallel to the field. This integration determines the
value W= W(a) =1 in the denominator. The expression
before the integral in the last step results from the vortex
solution of the London equation, b = @ _In(A/r)/2n)A2, for
a <r <. Finally, the integral itself is the length of the
intersection of the cylinder axis with the fractal, i.e.
LW(). For L >> §(T)

d-D
H =D -2 Dot )
Lo, \&) 4mu a

is the critical field for vortex penetration [2] in the
volume of the superconductor.

Table 1.  Extensive quantities (first row), their d-dimensional densities (third row) and the relation of the latter with their
D-dimensional counterparts (fourth row). The last column concerns the penetration depth.
Invariant Fy i) I L=®/1 En
d 1 2 2 1 3 1,23 1
. - _VAb
X f) b 1= mn b2/2p \% A
_ WV, Ab, Wb
X=X(X,) Wi Wb, i Wi 20 WV, Ay/W
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The surface barrier field H, is obtained by applying
similar rules to the calculation of the Gibbs potential,

G, =F, - IB. fid°F. Besides the vortex solution, the total

field is formed by an image anti-vortex outside the
cluster and the regular solution with boundary condition
b=pH on the surface of the cluster. Attractive and
repulsive interactions result in a barrier energy which
depends on the distance x; between the vortex and the
surface. The condition of a maximum of G establishes a
relation H(x;). We skip the details of this classical
calculation [2], which results in the fractal case in a
maximum value of H when x; = &(T) :

H, = i(.)__ ﬂg_)__ . ©6)
2mAER 14+ W(E)

The condition x; =& is equivalent to making critical
the current circulating between the vortex and the
surface. Indeed, the inter-granular phase gradient due to
the current circulating far from the surface is of order
2n/27h = 1/A, because the phase changes by 2n around a
vortex. The same current must cross the segment of
length x, on the other side of the vortex, so the phase
gradient increases by a factor of about A/x;, to become
1/x,. In fact, the current becomes critical when the phase
gradient is of order 1/§(T) {4,5]. In a way, we have
applied Silsbee's rule {8] to disordered superconductors.

3. Discussion

In the case of conventional superconductors the fields
H,, and H, have the same temperature dependence. This
seems not to be the case of H; and H, given by equations
(5) and (6). In effect,

H, ~ 8(d—D)v+2B . )

H. ~ eﬂ+(d+1‘D)v' ®)

sl

The question arises of which field is actually
measured or rather, what is the relevant fractal
dimension. If the two exponents were significantly
different a crossover between the two behaviours would
be expected. It is not observed experimentally, at least in
the temperature interval explored [1]. So it is conceivable
that different dimensionalities are relevant in the two
cases. Actually screening currents can only circulate in
closed loops, which would eliminate "dead ends" in the
fractal and leave the backbone dimension Dy =d-1=2
[9]. This may be the situation well inside the cluster,
where Eq.(7) is relevant. But the surface field (8)
depends on the interaction between the vortex and its

image, and here the dead ends will be influent on the
strength, shape and even number of images. It is
suggestive that if Dy is written instead of D in Eq.(7),
and the exponents in Eq.(7) and (8) are made equal,
taking into account the scaling relation 2f = (d-2+n)v
with n << 1, one obtains D = D, + 0.5. This is very close
of the percolation dimension D = d-Bp/vp =2.53. When
the known values of D, D, B and v are replaced, one
obtains ¢ = 2.7 in both cases.

Another characteristic field should have a similar
temperature dependence. When H 2 H, = @ /u£?, the
distance between vortices becomes smaller than the
intergranular (percolation) correlation length. So to
speak, the vortices start seeing the fractal structure in the
clusters. Independently of a more detailed description, we
can expect this ficld to be associated with a particular
region in the curve of the diamagnetic response versus
field, probably the approach to saturation. Since this
curve was shown in Ref. {1} to be universal for all
temperatures when plotted as a function of H/H(T), a
necessary condition for such universality is that
Hy(T)Y/H,(T) be independent of temperature. This is
numerically the case : Hy ~€2V, and 2vz ¢ = 2.7.
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