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Abstract 

Tim experimental scaling properties of the first flux penetration in a disordered superconductor (critical expotmnt 
q0 = 2.7) are derived from a granular fractal model. It assumes localisation of the order parameter in randomly coupled 
regions and a temperature dependent cutoff in the couplings. Screening currents circulate in percolation fractal clusters 
with temperature depevdent percolation parameter. Their description requires the heuristic transposition of classical 
calculations of first penetration fields in superconductors into fractal space. 

l. Introduction 

Measurements of the diam2gnetic response of 
YBaCuO6.7F x (0 < x < 0.14) ceramics [1] at very low 
fields (from 1 m Oe to 10e),  show that the field of first 
flux penetration follows a law Hl(T,x ) = Hi(0,x)cq ° with 

= I1-TFF d and ~p = 2.7 + 0.2, independently of the 
amount of fluorine. Furthermore, a universal behaviour is 
observed above H l, where flux motion in the sample is 
expected to be irreversible. 

Our purpose here is to show that the critical 
behaviour described by the exponent qo and its value, are 
necessary consequences of disorder in the samples. 
Disordel also provides a hint as to the origin of universal 
irieversible belmviour. 

The existence of a critical field 
HcI = ~0111 (L s / ~s ) / 4nk2 ~to for the transition between 

the Meissner and the single-vortex state in type II 
superconductors, as well as that of a barrier field 
H s = ~ o / 4 n X ,  ~.~ opposing the passage of a vortex 
across a surface, have been known for a long time [2]. 
Here L s and ~ are the Ginzburg-Landau penetration 
depth and coherence length, respectively ; they both vary 
like ~-1/2, which precludes the fitting of experimental 
results by any of the two fields. 

The diamagnetic response of YBa2Cu306.7F x samples 
obeys the same law in the granular sample with x = 0 as 
in the others where only conlpositional disorder varies 
with x [3]. We then assume tkat in all cases there is a 
Iocalisation of the superconducting order parameter in 
randomly coupled regions of size a >> ~(T). This allows 
us to apply and extend a model 14,51 which has 
successfully described properties of weakly-coupled 
granular superconductors, in particular the penetration 
depth X(T)~c"13 (13 =0.7 5:0.1) due to Josephson.-like 

intergranular screening currents. The main ideas of this 
model are : (i) the weakest couplings J << kaT have 
little iidluence on the critical behaviour near file 
coherence temperature T e ; only couplings above a cutoff 
J*(T) are relevant, Which defines a percolation parameter 
p[J*(T)] =Prob(J> J*) ; (it) percolation clusters and 
thermally correlated regions (grain-to-grain correlation 
length ~(T)) tend to coincide, i.e. the percolation 
correlation length ~p~ ~ ( T ) ~ - v  and ]P/Pc" II ~ s v/vv , 

where v and Vp are thermal and percolation exponents, 
respectively ; thus p(T) is independent of the particular 
distribution of couplings in the sample ; (iii) thermal and 
percolation exponents are related, and in particular 
v = 2Vp]3[~p~_ 1.35, in very good agreement with the 
experimental results [6] ; (iv) intragranular screening 
currents are taken into account by simply assuming that 
couplings J < J*(T) form a "medium" with permeability 
~t(Xs/a)< IXo in which the percolation clusters are 
imbedded. 

One of the essential features of these clusters is their 
fractal dimension. The question arises : how to describe 
the fields observed in euclidean (d-dimensional) space, 
actually generated by currents circulating in fractal 
(D-dimensional, D < d) space ? We answer this question 
heuristically in what follows, and transpose the classical 
calculation of I-Icl and ~ to the infinite cluster. 

2. Currents and fields in fractal clusters 

We remark that D-dimensional clusters occupying a 
volume L d contain (L/a) D elements (junctions, grains...). 
Here a is a microscopic unit of length. If a fractal being 
existed, he would measure a density (L/a)D/L D= 
aD=const ,  while euclidean observers would find 
(L/a)DFL d = a-d (lda)D-4. 
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2.1 Transformation o f  densities 
The preceding scheme applies to all extensive 

quantities. Euclideans and Fractalians see the same total 
free energy Fl, magnetic flux (I), current I . . . . .  but 

different vortex energies per unit length fl, flux (6) and 

current (])  densities, etc. More precisely, one can show 

that if f (?)  is a density defined in a fractal space the 

averages 

f = ( f ( ? ) ) d '  f D = ( f ( ? ) ) D '  f : W f D  (1) 

cluster. In the London approximation one has to 
minimize the sum of magnetic and kinetic energies 

2~to 

2~W ' 
(3) 

which leads to London equations for both 6 D and b. 
Using these equations and well-known vector identities, 
one obtains 

taken on d- and D-dimensional spaces,respectively, are 
related by the dilution factor 

j'(a / L) d-D if a < L < 
W(L) = [ (a /~ )d_  D if L > (2) 

Notice that the intersections 17] of a segment of length L 
or a surface of area L 2 with the fractal have dimensions 
D-2 or D-l, respectively, and fractal "length" LW(L) or 
"area" L2W(L). We can thus form Table 1, containing all 
quantities necessary for our calculations. They will 
usually appear under an integral sign, so the value of W 
will be determined by the domain of integration. The 
mesoscopic flux density 6 is related to the induction by 

2. 2 Flux penetration 
Table 1 provides the information necessary to 

formulate a physical problem in D dimensions and to 
solve it in euclidean space. This correspondence insures 
in particular that the operator V D satisfies formally usual 
vector identities. These assertions are usefully illustrated 
by the calculation of the energy F 1 of an isolated 
Josephson-like vortex line over a length L in an infinite 

FI(L ) = fdDFVD.(bDAVDAbD)g~/21-tD 

= fd °-' L(bAVAb) X 2 / 2 ~ W  

- "2° In ~ fdD-2~ 
4xX2l.tW(a) a 

(4) 

The first integration uses the divergence theorem 
after replacing V D by W'Iv. The second integration is 
performed around a cylinder of radius a (the vortex is of 
Josephson type and therefore has no normal core), 
parallel to the field. This integration determines the 
value W = W(a) = 1 in the denominator. The expression 
before the integral in the last step results from the vortex 
solution of the London equation, b = ePoln(Llr)12nX2, for 
a < r < X. Finally, the integral itself is the length of the 
intersection of the cylinder axis with the fractal, i.e. 
LW(L). For L >> ~(T) 

H I =  F! = / a / d - D  cD o in _x (5) 
L~o k ~ )  47tXZp, a 

is the critical field for vortex penetration [2] in the 
volume of the superconductor. 

Table 1. Extensive quantities (first ruw), their d-dimensional densities (third row) and the relation of the latter with their 
D-dimensional counterparts (fourth row). The last column concerns the penetration depth. 

Invariant F 1 ~ I L = ~ / I  E m 

d 1 2 2 1 3 1,2,3 1 

V A b  
X fl  b J =  p, IX b2 /2~  V X 

WV~ASD Wb~ 
X = X(XD) W f  1 W b  D i.tD Wl.t D 2lad W V o  2Lo/W 
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The surface barrier field ~ is obtained by applying 
similar rules to the calculation of the Gibbs potential, 

- f b. ~Id d L Besides the vortex solution, the total G I FI 

field is formed by an image anti-vortex outside the 
cluster and the regular solution with boundary condition 
b = txI-I on the surface of the cluster. Attractive and 
repulsive interactions result in a barrier energy which 
depends on the distance x I between the vortex and the 
surface. The condition of a maximum of G establishes a 
relation H(xl). We skip the details of this classical 
calculation [2], which results in the fractal case in a 
maximum value of H when x I - g(T) : 

H,~ = ~ o  W(~)  (6) 
2zt~.~la ! +W(~) " 

The condition x I ~ ~ is equivalent to making critical 
the current circulating between the vortex and the 
surface. Indeed, the inter-granular phase gradient due to 
the current circulating far from the surface is of order 
2n/2nL = l/L, because the phase changes by 2n around a 
vortex. The same current must cross the segment of 
length x I on the other side of the vortex, so the phase 
gradient increases by a factor of about L/x l, to become 
1/x 1. In fact, the current becomes critical when the phase 
gradient is of order I/~(T) [4,5]. In a way, we have 
applied Siisbee's rule 18] to disordered superconductors. 

3. Discussion 

In the case of conventional superconductors the fields 
Hcl and ~ have the same temperature dependence. This 
seems not to be the case ofH 1 and I-Isl given by equations 
(5) and (6). In effect, 

HI ~ ~(d-D)v+213, (7) 

~;13+(d+l-D)v 
Hsl ~ . (8) 

The question arises of which field is actually 
measured or rather, what is the relevant fractal 
dimension. If the two exponents were significantly 
different a crossover between the two behaviours would 
be expected. It is not observed experimentally, at least in 
the temperature interval explored [1]. So it is conceivable 
that different dimensionalities are relevant in the two 
cases. Actually screening currents can only circulate in 
closed loops, which would eliminate "dead ends" in the 
fractal and leave the backbone dimension D b --d-I = 2 
[9]. This may be the situation well inside the cluster, 
where Eq.(7) is relevant. But the surface field (8) 
depends on the interaction between the vortex and its 

image, and here the dead ends will be intluent on the 
strength, shape and even number of images. It is 
suggestive that if D b is written instead of D in Eq.(7), 
and the exponents in Eq.(7) and (8) are made equal, 
taking into account the scaling relation 213 = (d-2+q)v 
with r I << 1, one obtains D _= D b + 0.5. This is very close 
of the percolation dimension D = d-13p/v F = 2.53. When 
the known values of D b, D, 13 and v are replaced, one 
obtains (p ~ 2.7 in both cases. 

Another characteristic field should have a sinfflar 
temperature dependence. When H > H 2 = ~ o / ~  2, the 
distance between vortices becomes smaller than the 
intergranular (percolation) correlation length. So to 
speak, the vortices start seeing the fractal structure in the 
clusters. Independently of a more detailed description, we 
can expect this field to be associated with a particular 
region in the curve of the diamagnetic response versus 
field, probably the approach to saturation. Since this 
curve was shown in Ref. [1] to be universal for all 
temperatures when plotted as a function of H/HIlT), a 
necessary condition for such universality is that 
H2(T)/HI(T) be independent of temperature. Tiffs is 
numerically the ease : H 2 - ~2v, and 2v -= q) ~ 2.7. 

References 

1. J.P. Burin, Y. Fouad, A. Raboutou, P. Pcyral, C. 
Lobeau, J. Rosenblatt, M. Mokhtari, O. Pefla and C. 
Pemn, paper in this volume. 

2. See for example P.G. de Gennes, Superconductivity 
of Metals and Alloys, W.A. Benjamin, New York, 
1966 ; D. Saint-James, E.J. Thomas and G. Sanna, 
Type II Superconductivity, Pergamon Press, Oxford, 
1969. 

3. C. Perrin, A. Dinia, O. Pefla, M. Sergent, P. Burlet 
and L Rossat-Mignod, Solid State Commun. 76 
(1990) 401. 

4. J. Rosenblatt, Phys. Rev. B 28 (1983) 5316; J. 
Rosenblatt in Percolation, Localisation and 
Superconductivity, A.M. Goldman and S.A. Wolf 
(Eds), NATO ASI series B, Physics, Plenum Press, 
New York, Vol 109, p. 431, 1984. 

5. J. Rosenblatt, C. Lebeau, P. Peyral and A. Raboutou 
in Advances in the Physics of Condensed Matter : 
Josephson Effects, Achievements and Trends, A. 
Barone (Ed.) World Scientific, Singapore, p. 320, 
1986. 

6. J. Rosenblatt, P. Peyral, A. Raboutou and C. Lebeau, 
Physica B 152 (1988) 100. 

7. B.B. Mandelbrot, The Fractal Geometry of Nature, 
W.H. Freeman and Co., San Francisco, 1982. 

8. F.B. Siisbee, J. Wash, Acad. Sci. 6 (1916) 597. 
9. Y. Gefen, A. Aharony, B.B. Mandelbrot and S. 

Kirkpatrick, Phys. Rev. Lett. 47 (1981) 1771. 


